MATH 2 PAPER OF LAST YEAR (2025) SOLVED
Based on the provided examination
paper for Class 6 Mathematics from National Public School, HSR, Bengaluru, here
are the questions and their respective solutions in Q&A format.
Part
I: 1 Mark Questions
Q1. Each angle in a rectangle is
an/a: (A) acute angle (B) right angle (C)
obtuse angle (D) straight angle Answer: (B) right angle. Every interior
angle of a rectangle measures 90°.
+1
Q2. A tetrahedron is a pyramid whose
base is a: (A) triangle (B) rectangle (C)
square (D) quadrilateral Answer: (A) triangle. A tetrahedron is also
known as a triangular pyramid.
+1
Q3. Which three-dimensional shape
does this net create?
(Note: Referring to the image of a
circle attached to a sector of a larger circle) (A) triangular Pyramid (B) cylinder (C) cone (D) none of
them Answer: (C) cone. The sector forms the curved surface, and the
circle forms the base.
+3
Q4. I am a quadrilateral with only
one pair of parallel sides. Who am I? Answer: A Trapezium.
Q5. Which 3D shape looks like a can
of soup? Answer: A Cylinder.
+1
Part
II: 2 Mark Questions
Q6. Give one difference and one
common property between a square and a rectangle. Answer:
- Common Property:
Both shapes have four interior angles that are all right angles (90°).
+1
- Difference:
In a square, all four sides are equal in length, whereas in a rectangle,
only the opposite sides are equal.
Q7. Draw a cone and label its key
components (base, height, curved surface). Answer:
- Base:
The circular bottom of the cone.
- Height:
The vertical distance from the center of the base to the apex.
- Curved Surface:
The side area that wraps around the cone.
Q8. Construct a line perpendicular
to a given line XY from a point 'P' on the line using a compass and ruler.
(Steps not required) Answer:
- Place the compass pointer on point P and draw arcs on
both sides of P on line XY to mark points A and B.
- Using a radius greater than AP, draw arcs from points A
and B above the line so they intersect at point Q.
- Join P and Q. Line PQ is perpendicular to line XY at
point P.
Q9. Write two key properties of the
diagonals of a rhombus. Answer:
- The diagonals of a rhombus bisect each other at right
angles (90°).
- The diagonals bisect the vertex angles of the rhombus.
Part
III: 3 Mark Questions
Q10. Write any two 3D shapes
depicted in the famous Indian monument Taj Mahal. Write the number of faces,
edges, and vertices of each shape. Answer:
- Cylinder (The Minarets):
- Faces: 3 (2 flat circular faces, 1 curved face)
- Edges: 2 (circular)
- Vertices: 0
- Hemisphere (The Domes):
- Faces: 2 (1 flat circular face, 1 curved face)
- Edges: 1 (circular)
- Vertices: 0
Q11. Construct a 75∘ angle and bisect it. What is the measure of each of the
angles formed? (Steps not required) Answer:
- A 75∘
angle is constructed by bisecting the region between 60∘ and 90∘.
- When a 75∘
angle is bisected, each resulting angle measures 37.5∘.
Q12. The angles of a quadrilateral
are in the ratio 2:3:4:6. Find the measure of each of the angles. Answer:
The sum of angles in a quadrilateral is 360∘.
Let the angles be 2x,3x,4x, and 6x.
2x+3x+4x+6x=360
15x=360⟹x=24
- Angle 1: 2×24=48∘
- Angle 2: 3×24=72∘
- Angle 3: 4×24=96∘
- Angle 4: 6×24=144∘
Part
IV: 4 Mark Questions
Q13. (a) Identify the 3D shapes in
the figure below. (b) Write any two differences between them. (Note: Figure
A is a Square Pyramid; Figure B is a Triangular Prism) Answer:
+1
- (a) Identification:
Figure (A) is a Square Pyramid. Figure (B) is a Triangular Prism.
- (b) Differences:
- The Square Pyramid (A) has one base and triangular
faces that meet at a single vertex (apex). The Triangular Prism (B) has
two congruent triangular bases and rectangular side faces.
- The Square Pyramid has 5 faces, 8 edges, and 5 vertices.
The Triangular Prism has 5 faces, 9 edges, and 6 vertices.
Q14. Construct an angle of 135∘ using a compass and ruler. (Steps not required) Answer:
- Draw a straight line and mark a point O.
- Construct a 90∘
angle and a 180∘ (straight) angle.
- Bisect the angle between 90∘ and 180∘.
- 90∘+45∘=135∘.
Would you like me to explain the
step-by-step construction for the 135∘
angle?
Comments
Post a Comment